Comparisons of CFD Simulations and In-service Data for the Self Propelled Performance of an Autonomous Underwater Vehicle

نویسندگان

  • Alexander B Phillips
  • Stephen R Turnock
چکیده

A blade element momentum theory propeller model is coupled with a commercial RANS solver. This allows the fully appended self propulsion of the autonomous underwater vehicle Autosub 3 to be considered. The quasi-steady propeller model has been developed to allow for circumferential and radial variations in axial and tangential inflow. The non-uniform inflow is due to control surface deflections and the bow-down pitch of the vehicle in cruise condition. The influence of propeller blade Reynolds number is included through the use of appropriate sectional lift and drag coefficients. Simulations have been performed over the vehicles operational speed range (Re = 6.8× 10 to 13.5× 10). A workstation is used for the calculations with mesh sizes up to 2x10 elements. Grid uncertainty is calculated to be 3.07% for the wake fraction. The initial comparisons with in service data show that the coupled RANS-BEMT simulation under predicts the drag of the vehicle and consequently the required propeller rpm. However, when an appropriate correction is made for the effect on resistance of various protruding sensors the predicted propulsor rpm matches well with that of in-service rpm measurements for vessel speeds (1m/s 2m/s). The developed analysis captures the important influence of the propeller blade and hull Reynolds number on overall system efficiency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Autonomous Underwater Vehicle Hull Geometry Optimization Using a Multi-objective Algorithm Approach

Abstarct In this paper, a new approach to optimize an Autonomous Underwater Vehicle (AUV) hull geometry is presented. Using this methode, the nose and tail of an underwater vehicle are designed, such that their length constraints due to the arrangement of different components in the AUV body are properly addressed. In the current study, an optimal design for the body profile of a torpedo-shaped...

متن کامل

Identification of an Autonomous Underwater Vehicle Dynamic Using Extended Kalman Filter with ARMA Noise Model

In the procedure of designing an underwater vehicle or robot, its maneuverability and controllability must be simulated and tested, before the product is finalized for manufacturing. Since the hydrodynamic forces and moments highly affect the dynamic and maneuverability of the system, they must be estimated with a reasonable accuracy. In this study, hydrodynamic coefficients of an autonomous un...

متن کامل

Design and Experimental Evaluation of integrated orientation estimation algorithm Autonomous Underwater Vehicle Based on Indirect Complementary Filter

This paper aims is to design an integrated navigation system constituted by low-cost inertial sensors to estimate the orientation of an Autonomous Underwater Vehicle (AUV) during all phases of under water and surface missions. The proposed approach relied on global positioning system, inertial measurement unit (accelerometer & rate gyro), magnetometer and complementary filter technique. Complem...

متن کامل

Investigation on Nose and Tail Shape Effects on Hydrodynamic Parameters in Autonomous Underwater Vehicles

Development of autonomous underwater vehicles (AUVs) which meets the design constraints and provides the best hydrodynamic performance is really an important challenge in the field of hydrodynamics. In this paper a new profile is used for designing the hull of AUVs. The nose and tail profiles of an AUV using presented profile is designed such that it can properly consider the length constraints...

متن کامل

An Approach for Operation Depth Reduction of an Underwater Glider Propelled by Ocean Thermal Energy

The underwater Gliders are a kind of autonomous vehicles that have a special role in ocean surveys which demand continuous monitoring and long endurance. Because of low energy consumption and long endurance, these vehicles are favorite for these missions. Among this, a type of gliders can harvest ocean thermal energy, causing significant endurance increase. These vehicles need at least 680 mete...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009